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The drag force on spheres in thin jets 
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Department of Mechanical Engineering, The City University, London 

(Received 20 May 1980 and in revised form 8 August 1980) 

The prediction of drag force on spheres whose diameters are comparable to or greater 
than the dimensions of jets to which they are exposed is found to be much more difficult 
than in the more usual ‘fully immersed ’ cases. Experimental results show considerable 
scatter but prediction guidelines are given in the paper. In Reynolds-number terms all 
results are considered to be supercritical ones because of the typically very high 
turbulence intensities in the mixing regions of jets. 

1. Introduction 
The variation with Reynolds number and Mach number of the drag coefficient for 

a sphere has been well documented in scientific literature and, provided the sphere 
concerned is in an infinite fluid, predictions of drag force for a given sphere, fluid and 
speed can confidently be made. In some industrial sorting operations, however, an 
unacceptable object is rejected by being hit by an air jet of rectangular or circular 
cross-section having a depth or diameter less than the principal dimension of the 
object to be deflected. In  this case therefore a prediction of deflecting force based on 
the usual drag coefficient and frontal area is likely to be seriously in error. The problem 
is only slightly less intractable if the object approximates in shape to a sphere and if its 
centre coincides with the jet axis. These idealizations have had to be made in this paper. 

When jet and sphere have comparable cross-sectional dimensions, the problem 
resembles that encountered by aeronautical engineers evaluating drag coefficients of 
models in wind tunnels. A blockage correction must be applied because in a closed wind 
tunnel the streamline separation is artificially lowered because of the solid walls 
whereas in an open section tunnel the streamline separation is too great because of the 
constant pressure boundary. The correction to be applied in these two cases are 
consequently of opposite sign. A previous paper by Achenbach (1974) has dealt with 
spheres in circular-section closed wind tunnels but the work reported in the present 
paper deals with spheres in finite circular and rectangular jets and is believed to be 
unique. 

2. Theoretical considerations 
2.1. Spheres in circular j e t s  

The most important parameters affecting the drag force F on a sphere of diameter d on 
the centre-line of a jet issuing from a circular nozzle of diameter D are the jet speed at  
the nozzle uo, the downstream distance x of the sphere nose from the nozzle and the jet 
properties of density p, kinematic viscosity v and local speed of sound a. Three other 
very important variables are the surface roughness of the sphere, its sphericity and the 
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relative intensity of turbulence in the flow I ,  defined as the r.m.s. value of the 
fluctuating velocity component divided by the time mean value of fluid velocity at 
that point. 

A straightforward dimensional analysis of the problem using Buckingham’s method 
would require the selection of three variables with which to render the others dimen- 
sionless. If p, u,, and D are chosen then the dimensionless drag force Flpu; 0 2  can easily 
be shown to be a function of the geometrical ratios x / D  and d / D ,  the Reynoldsnumber, 
Mach number, relative intensity of turbulence, surface-roughness parameter and 
sphericity. 

The number of these functions needing to be considered can be minimized by making 
the spheroids as near spherical as possible and by surface polishing to the extent that 
hydraulic smoothness might reasonably be assumed. The well-known drop in drag 
force which suddenly occurs when the surface boundary layers change from laminar 
to turbulent form is then likely to appear at a Reynolds number of about 3.7 x 105, as 
given by Achenbach (1974). Unfortunately, the value of Re at which this drop occurs 
is also a function of turbulence intensity, the former decreasing as the latter increases. 

In their investigations of heat transfer from spheres in moving fluids, Lavender & 
Pei (1967) found it useful to define a ‘turbulent Reynolds number’ Re, as the product 
of Re and I .  Their results show that, at  a value of Re, of about 1000, drag coefficient 
decreases suddenly and heat transfer begins to increase with Re and they attribute 
this to passing through the usual critical-Reynolds-number condition. Their method 
of measuring drag is unspecified and experimental scatter is considerable so the value 
of 1000 should perhaps be treated with care. Results from other sources suggest the 
critical value of Re, should be higher. If the critical Reynolds numbers quoted by 
Achenbach (1972, 1974) are multiplied by his given turbulence intensities, a value of 
around 1600 is obtained. If results given by Pope & Harper (1966) are treated in the 
same way, it is seen that the critical value of Re, increases with I ,  tending towards a 
limiting value of about 3850. 

The point of this argument is that in a jet, where the turbulence intensity is charac- 
teristically very high, the product of Reynolds number (based on jet speed in the 
nozzle) and I is likely always to be well above 3850, indicating the likelihood of a 
turbulent boundary layer on an immersed sphere, even if the Reynolds number itself 
is at  a subcritical value in the Achenbach sense. Detailed investigations of jet tur- 
bulence have been made by Davies, Fisher & Barratt (1963), Goldschmidt & Eskinasi 
(1966), Heskestad (1965) and Miller & Comings (1957). All seem to agree that in the 
regions of considerable shearing action just outside the inviscid coreof a jet and down- 
stream, values of I as high as 0.25 can be encountered. This means that a sphere having 
a subcritical value of Re of lo5 would experience a supercritical value of Re, of2.5 x 104 
if placed in the appropriate regions of a jet. It seems fair to assume therefore that, 
provided a sphere is not tested in a situation where Re, is less than about 5000, the 
boundary layers may be taken to be turbulent and Reynolds number need not there- 
after be considered as a variable since the results of Achenbach (1972) show that under 
these conditions CD approaches a constant value of 0.2. 

Spheres were tested at  various Mach numbers by Naumann (1953) who showed that 
drag coefficient CD and critical Reynolds number were unaffected by Mach number up 
to about M = 0.3 and that thereafter both increased slightly up to M = 0.5. In the 
tests reported here, Mach number never exceeded 0.53 a t  the nozzle and was generally 
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between 0.1 and 0.3 so that this parameter will not hereafter be considered an important 
variable. The changes involved would have been within experimental error in any 
case. 

With the above simplifications therefore we are left with 

F/PUW2 = $[(a% (d/D)I.  (1) 

If the denominator of the left-hand side is multiplied by an, it  becomes the jet 
momentum flux J ,  assuming very thin boundary layers in the nozzle. This is an 
attractive normalizing quantity because it should remain constant with downstream 
travel, provided the jet is not subject to an ambient pressure gradient. 

The task of analysing experimental results would be made easier if the general 
statement represented by the right-hand side of (1) could be represented by two 
functions, one being a function of x / D  only, the other of d / D  only. This simplification 
could only be justified afterwards by results. We have now therefore 

P / J  = 91(x/D, # 2 ( d P ) ,  (2) 

where any pure number constants have been absorbed into one of the $ functions. For 
convenience, $* is chosen for this. Thc form of these functions can be found only by 
experiment , however. 

2.2. Spheres in rectangular jets 

All the foregoing comments apply equally well to spheres in thin rectangular jets 
except that D is replaced by a nozzle height h and width w. The downstream position 
of the sphere can now be related to either h or w, as can the sphere diameter. If h is 
taken to be smaller than w, then experience would suggest selecting h since the extent 
of the jet’s inviscid core will depend more closely on this quantity. Equation (1) might 
therefore be rewritten as 

F / J  = $I (+)  $2(h/d) $ 3 ( W / d )  (3) 
with the same provisos as apply to (2). 

The functions $2 and $8 are in reality the same, if gravity is ignored, since Nature 
will not prefer one direction to an orthogonal one, so that even if h and w are widely 
different they are nevertheless at two extremes of the same functional relationship. 
Equation (3) therefore reduces to 

(4) FIJ = 1G.,(x/h) $2(h/4 $tr,CW/d>, 

where once again any pure number constants have been absorbed into $2. 

This project was therefore concerned with investigating the drag on spheres in thin 
jets in terms of (2) and (4), ensuring that the product of local Reynolds number and 
relative turbulence intensity was always in the supercritical region. However, there 
was one case, mentioned below, where doubt must be raised about satisfying this 
criterion. 

3. Experimental arrangement 
Five wooden spheres were used in this project: their diameters were 31, 63, 73, 97 

and 115 mm. All were finished to a high standard, varnished and polished so that an 
assumption of hydraulic smoothness would be justified. Each had a threaded hole to 
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FIGURE 1 .  Strain-gauge cantilever force transducer. 

fit the sting of a strain-gauged cantilever force transducer (figure 1). The strain gauges 
were connected to a Wheatstone half-bridge, the unbalanced voltage from which was 
fed to  a time-averaging digital voltmeter. Calibration was against known static forces. 

The sting was of 8 mm diameter and in the case of the smallest sphere this gives a 
diameter ratio of 0.26. This is unlikely to have caused a substantial C, change since 
the sting diameter is probably much less than that of the wake. I n  cases where sting- 
mounted bodies are being tested in wind tunnels, the ratio of sting-to-body diameters 
is usually not less than about 0.6 and Pope & Harper (1966) state that there is then 
a slight reduction in measured C, because the flow just outside the wake has a body to 
which to  attach. 

As stated later, the smallest sphere was used only in the case of circular jets and in 
the case where the jet diameter was larger than the sphere’s, the C, values will be 
seen to be tending towards those of Achenbach. 

The force transducer was attached to  an x-y-z traversing gear bolted to the floor. 
The spheres could thus be manceuvred on to the jet centre-line at any downstream 
station, the centre-line being located by Pitot tube. It was found that central position- 
ing needed to  be accurate to  better than 1 mm of radius error. 

Circular jets were produced from four nozzles, each being fitted in turn into the side 
of a large air tank. The three smaller ones were properly contoured convergent circular 
nozzles having exit diameters of 3.17, 12.5 and 19.1 mm. The largest of the four was 
a sharp-edged orifice so a vena contracta area correction of 0-62 has been used in 
specifying its jet diameter as 45.7 mm. The air tank was suppliedvia a filter and pressure 
regulator from a large compressor. No supply pressure variations were encountered 
during testing. 

For rectangular jets, two arrangements were available. For producing jets initially 
l00mm wide and 8mm deep, the tank described above was modified to  allow the 
fitting of a rectangular nozzle having contoured converging upper and lower lips 
and parallel side plates. For producing jets initially 760mm wide, a completely 
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FIGURE 2. Variation of F / J  with downstream distance, d = 31 mm, D = 12.7 mm. 

different rig was employed consisting of a large wooden plenum chamber measuring 
approximately one metre squa.re in plan view and 2 m high, fed from its own blower. 
In one of the vertical walls of this chamber were two horizontal converging-nozzle 
contours, the upper one being moveable vertically to  give h values up  to 30 mm. 

The flow involved in these tests was inherently an unsteady one because of vortex 
shedding, especially so in the case of rectangular jets because axisymmetry was lost. 
The worst excesses of this unsteadiness were, however, minimized using an averaging 
digital voltmeter, as mentioned above. Even then, an averaging period of 10 s was 
generally required and in the more favourable case of circular jets the average values 
obtained over many spells of 10s were within 6 %  of their arithmetic mean. The 
sca.tter with rectangula,r jets was generally worse, as will be seen in the next section, 
but, in assessing the results, the flow unsteadiness should be constantly borne in mind. 

4. Discussion of results 

4.1. Spheres in circular jets 

Results were obtained by testing a particular sphere and nozzle at various axial 
locations of the former. This process was then repeated for all spheres and nozzles. 

By way of illustration, the F / J  values obtained with the 31 mm sphere and 12-7 mm 
nozzle are shown in figure 2. At larger downstream distances, the values of F / J  fall off 
with distance approximately as ( X / D ) - ' . ~ ,  whereas close to the nozzle they become 
constant, clearly showing the influence of the jet's inviscid core, where velocity is 
constant. Tests were not attempted too close t o  the nozzle because blockage by the 
sphere became apparent. Also, tests could not be conducted a t  very large distances, 
where the power of x / D  might be expected to approach - 2, because the experimental 
inaccuracy became a significant proportion of the measurable drag force. 

It is instructive to consider a t  this point the variation with downstream distance of 
C, based on the frontal area of the spheres and the jet velocity u that would have 
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FIGURE 3. Variation of function 9, with downstream distance for the following ratios of d / D :  
0, 1.62; B, 2.44; A ,  3.80; 0 ,  5.10; 0, 7.64; V, 9.78; V, 19.7; A, 23.0; 0 ,  30.6; +, 38.3. 
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FIGURE 4. Interpolated and smoothed version of figure 3.  

(The numbers indicate the d / D  ratios.) 

obtained at the nose of the sphere had the latter not been present to modify the flow. 
C, is easily shown t o  be 2 ( F / J )  (uo/u)2 (D/d)2 for a circular jet case so that, with ( F / J )  
varying as x-1.8 outside the core region and (u , /u)~  varying as x2,  their product is a 
weak function of x, increasing as x@2. This would mean that, with downstream travel, 
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FIGURE 5 .  Variation of function ~2 with diameter ratio. 
-, equation ( 5 ) ;  *, Achenbech (1972). 

C, would increase slightly, probably because the jet is becoming wider and the distri- 
bution of turbulence intensity across the face of the sphere is therefore changing. 

When using the largest jet (45.7mm) and smallest sphere (31mm) close to  the 
nozzle, an axial traverse point could be found where the drag force suddenly jumped 
to  at least double its previous value. This was almost certainly because the sphere had 
completely entered the inviscid core and was subject to  much lower turbulence 
intensities than outside. The Reynolds number for this condition was 2-15 x lo5, well 
below the critical value commonly accepted. A laminar boundary layer therefore 
probably existed on the sphere under these conditions and this justifies the assumption 
made earlier that  all results except this one are in the supercritical region since no 
other sphere exhibited this phenomenon. Thcre is obviously, however, scope for 
further work here. 

For the purposes of finding @,(x/D) in equation (2),  the value of the left-hand end of 
figure 2 can be set at unity and the plot then becomes versus x / D .  This can be 
repeatedfor all spheresand nozzles and the result is shownin figure3. Not all points are 
included for reasons of clarity. The function clearly depends on d / D  and a smoothed, 
interpolated version is shown in figure 4. Extrapolation beyond justifiable limits has 
not, however, been attempted. 

The inability of equation (2) to replace ( 1 )  is clear from figure 3, since the values of 
q51 depend on d / D  as well as on x / D .  It would be more realistic therefore to modify 
the equation t o  

P a )  F I J  = q51(x/D, d l D )  q52(d/m. 

It can be seen from (?a)  that a consequence of setting q51 at unity for small x / D  
va,lues is that  F / J  then represents the value of r$,(d/D) for that ratio of d / D .  This can 
be repeated for all spheres and all nozzles to  give a plot of 4, versus d / D ;  this is shown 
in figure 5. The function @, is analogous to  the blockage correction tha.t would need 
to  be applied to  the drag of an object tested in a finite open-section wind tunnel. At 
one extreme, where the sphere diameter is more than 36 times that of the jet, the 



528 R. S .  Neve, R.  Nelson and P .  Kotsiopoulos 

drag force tends to slightly more than one half the jet momentum flux; at the other 
extreme, the experimental values seem to point towards Achenbach's value, obtained 
with a jet: sphere diameter ratio of about 3.85 and corresponding to a drag coefficient 
at high supercritical Reynolds numbers of 0.20. The line 

(5) 

is seen to be a satisfactory fit to the experimental points and suggests that for very 
thin jets and large spheres the drag force tends to 56.3 % of the jet momentum flux 
whereas for large jets and small spheres the value of CD tends to 0.222. 

In this latter case, it should be emphasized again that only clearly supercritical 
values have been used to plot figure 5; the subcritical results obtained with the 31 mm 
sphere in an inviscid core would have caused the left-hand side of the curve to tend 
towards a CD value of about 0.5. 

@,(d/D) = 0.563/{1+ 2*25(D/d) + 5-075(0/d)2} 

4.2. Spheres in rectangular jets 
Although the 760 x 30 mm nozzle produced jets which might be considered infinite in 
lateral extent (especially as the spheres were never placed further away than about 
500 mm), the 100 x 8 mm nozzle produced jets which could certainly not be considered 
infinite plane ones. Traverses were therefore undertaken to establish velocity profiles 
in the latter case, using a Pitot tube. 

From traverses in the direction parallel to the h dimension, the velocity profiles 
downstream of about x = 8h were found to be broadly similar and of the usual 
Gaussian form whereas from traverses parallel to the w dimension the profiles were 
found to be flat-topped at all stations tested (up to about 30h). This latter point is not 
surprising since these traverses were all at  distances less than about 6w. The lateral 
extent of the flat tops was, however, decreasing with downstream travel, in accordance 
with the concept of a diminishing inviscid core. 

In both traverse directions, the centre-line velocity U, was of course common and 
was found to conform closely to the equation 

U,/TJ,, = 2.4(x/h)-o4', 

which is typical of those quoted in the many references on plane jets. Details are given 
in Grantham (1977). 

In testing the spheres in rectangular jets, results for the 31 mm sphere were discarded 
altogether aa being thoroughly unreliable. It proved impossible to obtain repeatable 
force values, almost certainly because the sphere was sometimes in a supercritical 
flow regime and sometimes in a subcritical one. The combinations of nozzle height, 
sphere diameter and jet speed made it difficult to overcome this problem. Figure 6 
therefore contains force results only for the four larger spheres, normalized in the same 
way as for figure 3, to give $, (z /h)  versw x /h .  The function now appears to be a 
unique one, the points once again showing a plateau at the left-hand end corresponding 
to positions in the inviscid core and passing to a line of gradient - 0.74 through a short 
transition region. The break point appears to be at  about x = 8h for all spheres. can 
be approximated by the equation 

$,(x/h) = 4*67(~/h)-@'~ (6) 

if x / h  is greater than about 10 and equals unity if x/h is less than about 6. 
As in the case of circular jets, it is worth while noting how C, varies with x. For a 
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FIGURE 6. Variation of function $l with downstream distance for the 
values of d (mm): 0, 63; 0, 73; A,  97; V, 115. -, equation 

FIGURE 6. Variation of function $l with downstream distance for the 
values of d (mm): 0, 63; 0, 73; A,  97; V, 115. -, equation 
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following 
(6). 

rectangular jet, C, is given by (8/7r) ( F / J )  (u,/u)~ (h /d )  ( w / d )  so that for agiven jet and 
sphere C, is proportional to ( F / J )  ( U ~ / U ) ~ .  The results just given indicate that, down- 
stream of the core, ( F I J )  varies as z-07* whereas (Uo/U)Z varies as zog4 so their product 
varies as xo2. This is the same as for the circular jets case and almost certainly for the 
same reason. 

In finding the form of the function $Z an assumption is needed. To isolate its value 
for very small h/d ,  testing must take place with a jet of high w / h  ratio (aspect ratio); 
it  may then be reasonably assumed that F / J  is proportional to the ratio of sphere 
diameter to jet width. That is, 

FIJ = +l@/h) W P )  K(w/d)- ' .  (7) 

If spheres are tested in the region x / h  < 6, then +l may be assumed equal to unity 
(figure 6) so that only the last two terms in (7) need be considered. The value of the 
proportionality constant K can now be found by assuming that, if w and h are very 
small compared with the sphere diameter, the value of F / J  will be the same as for a 
circular jet of diameter equal to w or h. Equation (5) suggests that under these extreme 
conditions 

$Z(h/d) +,(wid) = 0.563 

so that +Z at very low h/d values is the square root of 0.563, which is 0.7503. The value 
of K is then found by requiring the experimental values of @Z to tend to 0.75 at low h/d 
values (figure 7).  This method is clearly approximate but the results scatter does not 
warrant a more rigorous approach. The mean value of K for the four spheres was 
found to be 0.484 and the asymptote 0*484(w/d)-l has been superimposed on figure 7 
for higher w/d or h/d values. The experimental points (closed symbols) show a clear 
trend towards this asymptote. 

Since the line has a slope of minus one, a first-order equation could be employed to 
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obtain a ‘fairing in’ curve between the two extremes of the function and that 
equation is 

$2 = 0.7503/{ 1 + 1*55(h/d)}. 

All the above results were obtained with the 760 mm wide jet but four further points 
can be obtained on figure 7 using results from the 100 mm wide nozzle and the four 
larger spheres, equation (8) being used to correct for ?,b2(h/d). The w/d values range 
from 0.869 for the 115 mm sphere to  1.587 for the 63mm one and these results clearly 
follow the line represented by ( 8 ) .  Their scatter is almost as poor as for the other points 
on figure 7 but, bearing in mind the unsteady nature of the flow and the concomitant 
difficulties in measuring the drag forces, this is not surprising. Also superimposed on 
figure 7 are results obtained by Grantham (1977) using all five spheres and a mechanical 
balance for drag measurement. Allowing once again for experimental scatter, they 
agree well with the results obtained with the strain-gauged force transducer and the 
number of results going to make up figure 7 suggests that  this figure can be treated with 
some confidence. 

4.3. Accuracy 

Experimental accuracy in these tests was not high. Positioning of the sphere exactly 
on the jet centre-line and measurement of a time-averaged drag force were the points 
of major concern and these have been commented upon already. The measurement of 
2 and J were relatively much more accurate. Although scatter is high, especially in the 
case of rectangular jets, it is suggested that, in view of the number of results obtained, 
it would be justifiable to  quote a probable error of +_ 10 yo for predicted drag forces 
obtained from these figures. 

FIGURE 7.  Variation of function ~z with h / d  and w/d. -, equation (8);  - - -, asymptote. Closed 
symbols, w = 760 mm; open symbols, w = 100 mm; 0, Grantham (1977), w = 100 mm. 
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5. Conclusions 
The prediction of drag force on a sphere exposed to a thin jet has been found to be 

more difficult and less trustworthy than in ‘fully immersed’ cases. For circular jets, 
equation (2a) can be used with obtained from figure 4 and $2 from figure 5 .  For 
rectangular jets, equation (4) can be used, with figure 6 providing the values of @, 
and figure 7 giving both required values of ~ 2 .  

In all cases experimental points scatter has been found to be considerable and it is 
unlikely that an accuracy of better than about f 10 yo is justifiable for any drag 
predictions. 

All results quoted are considered to be supercritical ones in the Reynolds-number 
sense because of the very high turbulence intensities encountered in jets. In  cases 
where the sphere is totally engulfed by the jet’s inviscid core, a higher drag is en- 
countered and further work is needed in predicting the drag under these subcritical 
conditions. 

The authors wish to express their gratitude to the Science Research Council for 
financial support for this project in the form of a Research Grant. 
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